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Abstract-- The relationship between amount of information 
and learning complexity is studied for the discrete Hopfield 
model of associative memory. More precisely, we analize, 
from a statistical point of view, the relation between the 
probability of a state of the system to be a  stable equilib-
rium (i.e. a memory) and a value of entropy or uncertainty 
associated to it. Computer experiments are made to confirm 
these results.
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Resumen-- En este trabajo se estudia la relación entre la canti-
dad de información y la complejidad de aprendizaje en el modelo 
discreto de Hopfield de memoria asociativa. Más específicamente, 
se analiza, desde un punto de vista estadístico, la relación entre la 
probabilidad de que un estado del sistema sea un equilibrio estable 
(memoria) y un valor de entropía o incertidumbre asociado a él. 
Se realizan experimentos computacionales para corroborar estos 
resultados.

Palabras claves-- memoria asociativa – red de Hopfield – infor-
mación – entropía – complejidad de aprendizaje.
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I. IntroductIon

Up to now, the capacity of neural networks (and, 
especially, of the Hopfield associative memory [1]) 
as dynamical systems to memorize, i.e. to have 
attractor stable states, has been studied in depth 
[6],[7],[8]. Our main interest here is the question 
concerning the complexity of learning in relation 
with the information to be learned. In this work we 
investigate whether (and, if so, how) the probability 
that a state, after taught to the network, become a 
stable equilibrium, depends on some property inhe-
rent to the structure of the state. We focus on the 
amount of information (or of uncertainty) contained 
in the state.

In the first experiments we tried to find a relation 
between the complexity of learning several parame-
ters of the problem, such as dimension (i.e. number 
of neurons in the network) and the number of states 
taught to the system.

The first fact observed was the independence of 
the complexity with respect to the number of neu-
rons. This was previsible, since what the network 
learns is a matrix of synaptic weights, and the con-
vergence of  each entry of this matrix to its correct 
value is “in parallel” (i.e. simultaneous) with the 
others. If we consider each memory to be learned 
as a concept (a relationship between a sequence of 
attributes) and each unit (bit) of that memory as 
an attribute of the concept, then to learn an attri-
bute consists of  learning N connections. But that 
learning is accomplished in parallel; hence the com-
plexity, in terms of number of examples, does not 
increase.

II. BasIc defInItIons

The Hopfield model of associative memory [1] is a 
simple model in its theoretic formulation and easy to 
implement in a computer.  It consists of a system of 
interconnected units (“neurons”), having each one 
two possible states, 1 and 0. The state of neuron i at 
time t will be 1 (“activated”) if the sum of the input 
due to the other units, properly weighted, is greater 
than a critical value or “action threshold”. That is:

                N
    xi(t + 1) = sgn{   Σ   Tijxj(t) - di}
                  j = 1

being N the number of neurons that form the net, 
x→ = (x1,..., xN )T the vector that describes the status 
of the net, di the action threshold associated to neu-
ron i and T the matrix of weights (“synaptic connec-
tions”), which is computed according to Hebb’s rule:

               
M

            Tij =      Σ   (2xk
i - 1)(2xk

j - 1) if i =/ j
                k = 1       

0    if    i = j

where x→k = (xk
1,..., xk

N) are the configurations in-
tended to be stable (i.e. memorized) for the network.  
We make the assumption that no neuron interacts 
with itself, hence the main diagonal of T is zero.

This simple model, widely studied, exhibits inter-
esting properties related to its information capacity. 
In [1] it is proven that, if the states that define the 
matrix T (the memories x→k, k = 1,..., M ) are pseu-
doorthogonal, i.e. they behave as random variables 
following a probability distribution such that

          M          N
 E       Σ          Σ x ki  x li   = 0
      k, l=1      i=1
      k =/ 1

where E stands for the expectation and is compu-
ted over the sum of all inner products between cros-
sed pairs of vectors to be stored, then the network 
can memorize (have as attractors in its evolution) a 
certain amount of states, in proportion to the num-
ber of neurons. This capacity has been rigorously 
analysed and quantified [9],[10].

     The purpose of this paper is to study an experi-
mental fact: in the “classic” Hopfield model, the size 
of the basin of attraction for a stable state (subset 
of initial states that evolve into that state) depends 
strongly on the considered state. This implies that 
not all the memories would be equally complex to be 
learned. This dependence of the learning complexity 
with regard to the information to be learned, opens 
the question which we are here interested in: the re-
lation between the complexity of learning and some 
measure of the amount of information contained in 
the state to be learned.

We used a simplified formulation of the law of evo-
lution between states, as follows:

             N
 xi(t + 1) = sgn{   Σ   Tijxj(t)}
              j = 1

i.e. considering all thresholds equal to zero.

III. InformatIon and complexIty

As announced previously, from the experiencies 
made up to now in connection with the Hopfield mo-
del,  it follows that the size of each basin of attrac-
tion depends strongly on the structure of the corres-
ponding attracting state. We intend to sketch and 
test a hypothesis about the relation between the size 
of these basins and the structure of the correspon-
ding attracting state.

Suppose that our concept is represented by the  
vector x→ = (x1,..., xN) with xi taking values 1 or 0. We 
define the entropy or uncertainty associated to x→ as

I(x→) = -[ fx→ (1) log fx→
 (1) + fx→(0) log fx→(0)]
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where

fx→ (k) = # {i/xi = k} / N   k = 1 or 0

i.e. frequence of the value k in x→ [4].
According to this definition, there is a direct rela-

tion between the amount of information that a vector 
contains and the similarity between the frequencies 
with which their components take each of the pos-
sible values (in this case, only two). States with all 
their components equal (1 or 0), have the less possi-
ble entropy. The latter fact agrees exactly with what 
happens in the Hopfield model with a state and its 
complement (the vector having 1’s  instead of  0’s and 
conversely), in the sense that, if one of them is stable, 
also is the other: from the point of view of the infor-
mation that they contain, they are also equivalent. 
Moreover, our experiments confirmed that the states 
the most easy to learn are those which minimize I 
and, at the same time, those which, once learned, 
have the largest attracting basins. In the Hopfield 
model the complexity of learning a concept seems to 
be directly proportional to the uncertainty associa-
ted with it and inversely proportional to the size of 
the basin that the concept generates after  learned. 
An intuitive but reasonable interpretation of this 
fact is that a state with a  large uncertainty can 
be recognized only from another very similar state 
(that is what means, ultimately, that its attracting 
basin is small).

We want to study from a statistical point of view 
the relation in Hopfield’s model between the probabi-
lity that a state of the system be an equilibrium state 
(i.e. a “memory”) and the value I associated to that 
state and defined as above.

Suppose that j1, j2,..., jL with 1 < j < N is the se-
quence of natural values such that

xk =   1 if k = ji for some i
 0 if not

that is, exactly L components of x→ are 1’s and N-L 
are 0’s.

Suppose we teach the network M memories x→m by 
means of the Hebb’s rule, that is, the weight matrix 
Tij  is

               
M

            Tij =      Σ   (2xk
i - 1)(2xk

j - 1)    if i =/ j
                k = 1                       

0    if    i = j

and that the system evolves according to the 
Cooper’s law, i.e.:

                   N
       xi(t + 1) = sgn{   Σ   Tij xj(t)}
                      j = 1

Memories x→s are generated independently and 
pseudoorthogonally. Then, for a certain memory x→s, 
with a sequence { jl}L´

1 associated:

P(x→s stable) = P(sgnTx→s= sgn x→s) =

 
=

 

(note the product distributed between two lines 
due to space limitations) 

     Although the sums are not independent random 
variables, it can be seen that their correlation is po-
sitive. Then we can find the following less bound for 
the latter probability:

   

=

         

=



INFORMATION, STABILITY AND LEARNING COMPLEXITY IN ASSOCIATIVE MEMORIES

52

Double sums are sums of L’(M-1) independent 
binomial variables. Observing that each one takes 
value 1 or 0 with equal probability, it can be easily 
seen that their expectation equals 0 and their va-
riance equals 1. Hence, if we consider a large num-
ber of neurons (N) and, consequently, large values 
for L’ too, we can approximate these sums by normal 
variables with variance L’(M-1) and mean L’ in the 
first case and -L’ in 

the second case (due to the constants which are 
summed in each case) [2],[3],[5]. Then the bound is 
obtained in the form of a normal N-valuated proba-
bility distribution:

  

= 

Introducing the change of coordinates

y =      (x- L´)    
           √L (́M - 1)

we obtain finally:

P(x→s stable) > [F(A(L´, M)]N

where F is the normal distribution function with 
mean equal to zero and variance equal to 1 and

                  1
A(L ,́M ) =       L´     2

 M - 1

According to this,  for every fixed x→s and M, num-
ber of memories, it holds that

P(x→s stable) ____N→∞_____→1

but the limit case (the best, respecting rate of con-
vergence) is

x→s = (1,...,1)

IV. experIments

In this section we present the results of computer 
simulations made to test the validity of the theoretic 
bound derived above.

We computed, for different values of N and M, the 
relation between the probability of a taught state to 
be stable and the value of I for that state. Figures 
4.1 and 4.2 show some of those results.

From the comparison between the resulting cur-
ves and the theoretical result, we infer that the 
bound proposed here is confirmed by experience. 
Nevertheless, it seems that for certain values (or 
ranges of values) of I, the actual behavior is closer to 
the theoretical bound than for others.

Fig. 4.1  Relation between the probability of  sta-
bility of a state and the value of I for that state. Here 
N = 100 and M = 10. In dotted lines, the theoretic 
less bound.

Fig. 4.2  Idem fig. 4.1 with N = 100 and M = 15. 
Note the decrease of both the actual probability of 
learning and the bound when increasing M.
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V. conclusIons

In this paper we analyzed the relation between lear-
ning complexity and entropy of the information to be 
learned in the Hopfield model of associative memory. 
Specifically, a lower bound for the probability of equi-
librium of a memory has been obtained. Computer 
experiments confirmed this theoretical result.

Several questions remain open. An interesting one 
concerns the search for some measure representing 
the structure of the information, and not only its pro-
bability distribution. For example, according to the 
definition given above, the vectors

(1 0 1 0 1 0 1 0 1 0 1 0)

and

(1 0 0 0 1 0 1 1 0 1 0 1)

have the same value I associated. However, the 
number of different structures in the second pattern 
is much greater than in the first. For future work we 
would like to find a measure (or measures) expressing 
the information contained in those topologic structu-
res. As for the Hopfield model, it does not seem quite 
capable (at least in its original formulation) to quan-
tify information according to finer measures than the 
used in this paper.
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