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Abstract-- This paper considers a problem for scheduling jobs
on two identical parallel machines, the aim was to minimize two
criteria in particular, makespan and total flow time. In order to
solve this problem, two approaches were considered. A mecha-
nism was proposed as an approach to solve this type of problem
with a setting of a 2-player non-cooperative game, under the
framework of a 2x2 non-sum zero matrix; each player looking
after one of the criteria suggested in the scheduling problem. On
the other hand, a Genetic Algorithm, known as Strength Pare-
to Evolutionary Algorithm (SPEA), was applied to the problem.
The comparison between both approaches suggests a comple-
mentarity among rational agents approach models and machine
enforced solution approaches. The resulting Pareto Front set of
points were plotted and curves were compared, showing promis-
ing results for game theoretic applications to scheduling under
multiple objectives.

Keywords- identical parallel machines, makespan, total flow
time, non-cooperative game, SPEA, Pareto Front.

Resumen-- Este articulo contempla el problema de programacién de la
produccién en una configuracion de maquinas en paralelo con el objetivo
de minimizar dos criterios en particular: el lapso y el tiempo total de flujo.
En este problema en particular, el incremento de uno de estos objetivos
resulta en la reduccion del otro, por lo que se propone su solucion bajo
enfoques metaheuristicos. Dos tipos de algoritmos fueron considerados:
uno basado en la teoria de juegos y el otro en los algoritmos genéticos.
Para el primero se disefia un mecanismo de juego no cooperativo entre
dos jugadores, en donde cada jugador busca optimizar cada criterio de
programacion de las maquinas. Para el segundo enfoque se implementa
el algortimo genético SPEA, en donde se seleccionan aquellas soluciones
dominantes en ambos objetivos. Resultados de ambos enfoques resultan
en un Frente de Pareto, las cuales representan las soluciones dominantes
para ambos objetivos. Estos resultados demuestran que ambos enfoques
son complementarios: SPEA arroja resultados que cubren todo el frente
de Pareto, mientras que el algoritmo de Juegos No Cooperativo indica la
programacion mas conveniente para cada agente en particular.

Palabras clave- maquinas paralelas idénticas, tiempo de flujo total,
makespan, juego no cooperativo, SPEA, frente de pareto
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I. INTRODUCTION

Production Scheduling is a wide and extensive line of
research, which has been developing over the century
and continues to bring solutions to applications in the
industry. Its complexity is also evident, given that
everyday hundreds of tasks are produced in a pro-
duction line and a diversity of settings are conside-
red for less and more specialized products. Machine
learning is, as well, a line of research that has consi-
derable applicability and is well-known for approa-
ching complex problems, such as the ones mentioned
below. When tackling multiple objectives, decisions
become even more complex and decisions to complete
several criteria usually involve the decision of single
experienced person in a facility. Several heuristic ap-
proaches have been employed for multi-objective opti-
mization in scheduling problems [1], [2], [3], [4], but
metaheuristics are considered to be the best in terms
of efficiency and robustness [5], [6], [7] and [8].

Game theoretic approaches, on the other hand,
allow negotiation processes to be mathematically mo-
deled through a simplified structure, establishing the
interactions between each player’s options to accept
conditions set up by them. Once an agreement bet-
ween players is achieved, it is said to have come to
equilibrium. Traditional negotiation theory analyzes
single criterion games in which each agent appraises
one single objective, hindering more realistic negotia-
tion processes that may involve more than one crite-
rion. When analyzing such processes an additional
difficulty arises: The pay-off matrix within the game
can not be considered zero-sum, thus the costs im-
plied for these players are given in a different scale,
depending on the criterion assumed for each player.
At the same time the equation must consider how
each agent is affected by the decision taken.

When making decisions in a firm, there are at least
two conflicting objectives faced by the person in char-
ge. On one hand, the production must be completed as
fast as possible, while the customer representatives
strive to get their own client’s job done as fast as pos-
sible. While maximizing overall utility seems like a
reasonable answer it is not likely to represent the real
outcome since efficiency implies sacrificing client’s sa-
tisfaction, which may lead to the loss of market and
prestige. Agent-based models, such as the game theo-
retic approaches, can more realistically represent a
decision maker in a facility, which satisfies the ove-
rall efficiency of the production line versus satisfying
the customer’s needs.

Extant Work

Literature reviews on scheduling theory, game theory
and multi-criteria scheduling theory, has shown the
area has been broadly studied. Specifically in para-
llel machine scheduling under multiple objectives,
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heuristic approaches such as the GAP/EDD algo-
rithm were combined with metaheuristics, such as
Tabu Search, to solve the bicriteria Cmax and Max
T problem [1]. In the recent years, new metaheuristic
approaches have been proposed to solve the different
multi-objective problems in parallel machine schedu-
ling, such as the Nondominated Sorting Genetic Algo-
rithm (NSGA) [9], the Particle Swarm Optimization
Problem (PSO) [10], among others. On the other hand,
agent-based approaches have also been approached
for machine scheduling. One of the most important
approaches of game theory in scheduling have been
obtained in the area of mechanism design [11], Auc-
tion Theoretic Modeling [12], Worst case Equilibra
[13], and Kutanoglu’s incentive design scheduling.
One of the contributions is observed in Even-Dar’s
work [14], which contemplated a setting composed
of n jobs with an associated agent, over m machines.
Jobs were allowed to select a machine to minimize
their own cost, this cost was determined by the load
on the machine, which was the sum of the weights of
the jobs running on it. It was stated that at least one
job was willing to change to another machine, until
Nash Equilibrium was reached.

More specifically, in the area of computer science, a
concept known as agent-based simulation has been of
great influence to today’s research on game theoretic
approaches to scheduling. Archer [13] and, Kutano-
glu and Wu’s work [12] stated that jobs are considered
agents; while Nisan [15] also states the usefulness of
a mechanism design for selfish agents. Recent work
has been applied to the allocation of deteriorating jobs
in parallel machines [16].

Decision making situations always involve a com-
ponent of strategy, which has been traditionally
analysed in Game Theory as well as the Economic
Theory, but, as observed, has also been adopted in
Computer Science and Operations Research studies
as well, motivated by the rising theories on auctions
and internet-based transactions. From the applica-
tion perspective on Production Scheduling, it has been
found that its focus may be quite narrow, yet, this is
indeed one of the approaches that explain this type of
optimization problem in a decentralized perspective,
where the centralized decision traditionally made is
partially replaced by decisions and actions taken by
agents. These are assumed to act rationally, based
on their own self-interest and it is assumed that this
selfish behaviour leads to some sort of system equili-
brium, but it can also be true that the design of this
decentralized setting may lead behaviour of selfish
agents to act towards global system performance [17].

This Work.

This research was performed in a production pro-
gramming environment sketch in order to obtain
solutions for scheduling on a particular problem un-
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der parallel machine configuration: (Pm||Chasx, ZCL-),
where C,.. represents maximum completion time
and 2C;, total flow time. Usually, the schedule for
this type of configuration results from the arrange-
ment of each one of the n jobs, assigned to m number
of machines; this depends on the availability of the
machine (First Available Machine), or; in the case of
non-identical machines, it can depend on the velocity
of the machine (Fastest Machine First), but this was
not considered in this research. To minimize flow
time, an algorithm that constructs a list in order of
non-decreasing processing time (SPT) is widely used.
On the other hand, in order to minimize makespan
(Cha), a list in the order of decreasing processing
time is constructed (LPT).

The game theoretic approach proposes a mecha-
nism that considered two types of agents, an agent
that represented the jobs (job agent) and the system
controller: agent 0, which regulated the jobs’ alloca-
tion on the machines. Each agent responded to its
corresponding criteria, agent 0 aimed to minimize
the makespan, while each job agent, the total flow
time. A 2-player non-cooperative game was designed,
where each job agent played against the controlling
agent, whose decisions: to move or not, were based
on some associated costs, that were measured in
units of time and depended on each of the criteria
measured [18]. The metaheuristic approach, on the
other hand, was proposes a nice configuration of a
scheduling allocation represented as chromosomes.
These chromosomes interact with each other and re-
produce other good and less than good solutions. A
fitness function selects the fittest, mutation and re-
production functions provide another generation of
solutions. On the long run, these solutions lead to glo-
bally optimal solutions to multi-objective problems,
such as the one shown below. Among the different
algorithms developed, the Strength Pareto Evolutio-
nary Algorithm (SPEA), proposed by [19], proved to
be most efficient when tackling multiple objectives in
different engineering applications [20], [21].

According to Game Theory a simulation based on
agents mechanism was designed in order to achieve
a set of efficient schedules whose outcomes were sket-
ched in a Cpa vs. 2C; graph that later transformed
into a Pareto Front of efficient solutions for our pro-
blem. When analysing the trade-offs and movements
among agents it was observed that in the long run
they sometimes tend to choose a set of strategies or
have a tendency to choose; when this happens, the
model gets to an equilibrium in the long run, it can
be Nash Equilibrium or Mixed Equilibrium, in the
case, it involves choosing a set of strategies with a
certain probability. On the other hand, metaheuris-
tic approaches do not take into account human beha-
viour, but may lead to more efficient solutions.

Hence, this investigation is composed by the inte-
gration of both of these topics of study and intends to
bring out solutions that complement each other. This
paper is organized as follows: In section 2, the pro-
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posed game theoretic model is described; in section
3 a numerical example is provided where results to
game theoretic model were analysed; in section 4,
the metaheuristic SPEA is described; in section 5,
multiple scenarios are provided and results for both
approaches are obtained; ending in section 6 where
the conclusions and further analysis are provided.

II. ProroseEp GaAME THEORETIC MODEL.

Consider once again the scheduling problem confi-
guration for identical parallel machines, where the
objectives were makespan and total completion time
(Pm||Chax, 2Cy). A proposed model developed by
Ramirez-Rios, Rodriguez and Paternina-Arboleda
[18], involve a combination of machine learning with
repeated non-zero sum games. Since both variables
are conflictive: Cpox and XC;, a scheduling problem
considering both of these criteria was solved by using
the mechanism design approach using incentives
and penalties in the agent’s payoffs. During the si-
mulation, each job agent plays a game with a central
agent in a sequential order. Each type of agent has
an objective that can interact rationally with its op-
ponent and lead to overall system efficiency, in order
to meet both criteria through tradeoffs within a pa-
yoff matrix.

A. Definition of the Game

Consider a non-cooperative repeated game of two
players, where player one represents a job agent and
player 2, agent 0. The job agent represents a product
or customer and the agent 0 represents the produc-
tion plant supervisor or manager. Each one has two
strategies that correspond to their own interests. For
the job agent these are to seize his job first, which
leads to an improvement of his associated partial
flow time, and for agent 0, to reach a better C,.... Re-
garding the system mechanism to reduce not only
Cax but also total flow time, it is assumed that each
player within the game will play by assuming some
costs imposed by the system, in order to allow the
conditions acquainted to be reached. A description of
the strategies for job agent and agent 0 are S; and
S., respectively:

Strategies for job agent, S; = {A, B}:

A= Stay in the current position (time slot).

B= Move to the previous available position.

Strategies for agent 0, S, = {C, D}:

C= Leave job on the current machine.

D= Move the job to another machine.

The payoffs for the players have been represen-
ted as costs, which are expressed in units of time,
which give a proxy to associated costs that players
could incur. The cost functions are given in terms of
the makespan and flow time. Each pair of strategies
involves a cost function, which has two components
that illustrate the performance cost and the incenti-
ve for each player when choosing the strategies des-
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cribed above, providing what is known as the outcome
cost (OC). There are four costs for each agent, which
are further evaluated in a non-zero sum game matrix.
The cost function for the job agents is provided in
Equation 1. The first term corresponds to the total
completion or flow time of the system (XC). The se-
cond term is known as a payment incentive for the job
agent in order to encourage it to sacrifice some time
in their production, guaranteeing overall efficiency.

@

This incentive is defined as the fraction of the total
cost represented for the job agent in the production
line. If it is has a longer waiting time, this cost will be
lower than if it were in a better position. Equation 2
provides how this function was calculated.

Job; Cost = TotFT - S(F,.)

Pi(job_selected)

= PartialFT(on_machine_selected_by_agent0) 2)

Bi

The cost function for agent 0 is provided in Equa-
tion 3. The first term in the equation (C,..) is referred
to as the maximum completion time measured in the
system. The second term is similar to the opportunity
cost given to the controlling agent when deciding to
move a job or not. It includes a Sy, which is a value
based on the weight that the completion time of the
current machine (the one being analyzed) has over
the other machine. A similar calculation is derived as
in Equation 2. The second part of this term (C;) of the
equation corresponds to the completion time of the job
agent in its current position.

Agent0 Cost = Cyar + BOC; 6))

B. General Structure of the Model

PROPOSED MODEL -
SCHEDULING GAME MECHANISM

1 Load Balancing for the initial schedule generated.
2 Do

3  Airandomly chosen from the machine with the
highest load, current machine.

4 A second machine is randomly chosen.

5  Aiand AO choses among strategies.

6  According to payoff matrix, a strategy is chosen.
7  Ifrand() < prob_move Then

8 Ai is reallocated in the second machine at

the end of the schedule.

9 Else

10 Movement corresponding to the chosen
strategy results in a new schecule.

11  Endif

12 Schedule is registered and so are the values for
Cmax and Flow Time.

13 Loop Until “System Reaches Equilibrium”

14 Pareto Front is generated based on dominance
between the registered values for Cmax and Flow
Time
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The “Scheduling Game” Algorithm has two ter-
mination conditions providing an option to the user:
by using a number of iterations or by reaching equi-
librium in the system. In order to establish the num-
ber of iterations permitted, a limit had to be deter-
mined. This limit depends on the number of jobs ()
and the number of parallel machines (m) in the sys-
tem. Given that each iteration allows one movement,
then the limit was determined by: n * n * (m - 1).
Given this limit, computational complexity for this
algorithm is approximated to O[LOG(N?*(M-1))].

III.A NUMERICAL EXAMPLE:
SOLVING THE SCHEDULING GAME

A. Numerical Example

Let’s consider a bi-criteria scheduling problem com-
posed of 10 jobs, Ji={8,46,30,19,4,36,21,23,6,17} that
need to be allocated in 2 parallel machines in order
to minimize makespan (C,..) and total flow time
(ZCj). There is no information on release dates or se-
tups considered and preemption is not allowed. This
problem is solved through the proposed game theo-
retic model to illustrate its applicability.

The game theoretic approach described previously
starts by generating an initial solution, as shown in
Table 1, based on Load Balancing Heuristic. This
heuristic uses the rule First Come, First Served, yet
the allocation of jobs in machines is done to guaran-
tee balance in terms of completion times.

TABLE 1. INITIAL ALLOCATION OF JOBS
IN 2 MACHINES BY LoaD BALANCING

MACHINE 1 MACHINE 2
Ji Pi Ci  PartialFi | Ji Pi Ci  Partial Fi
1 8 8 8 2 46 46 46
3 30 38 46 5 4 50 96
4 19 57 103 6 36 86 182
7 21 78 181 9 6 92 274
8 23 101 282 10 17 109 383

On each iteration, a random selection occurs in
the machine with the maximum makespan and a
job is selected to be the job agent for the iteration.
In this example, job 5 was selected as the job agent.
After choosing the job agent, payoffs for both the
controlling agent and the job agent are calculated
according to the equations explained above. These
payoffs as observed depend on the position of the job
and the machine it will be allocated to. As observed
in table 2, the job agent 5, has only two strategies:
(A) Stay in its actual position (timeslot 2), or (B)
move to a previous position (timeslot 1). Likewise,
the controlling agent, has to choose between two al-
ternatives: (C) the choice to move the job to machine
1 or (D) leave it in machine 2.
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TABLE 2. JOB AGENT SELECTED FOR THE GAME
(A5) AND THE POSSIBLE MOVEMENTS IT CAN MAKE

The allocation of jobs, as observed in Table 4,
change according to Nash Equilibrium, which re-
sults in a makespan, C,.., of 109 and a total flow
time, XC;, of 623 units of time.

TABLE 4. PROPOSED SCHEDULE FOR FIRST ITERATION.

MACHINE 1 MACHINE 2
Ji Pi Ci  PartialFi [ Ji Pi Ci  Partial Fi
1 8 8 8 2 46 46 46
3 30 38 46 5 4 50 96
4 19 57 103 6 36 86 182
7 21 78 181 9 6 92 274
8 23 101 282 10 17 109 383

Table 3 presents the resulting payoff matrix
for all possible scenarios on the players’ decisions,
which make the first iteration of the game designed.
When solving the matrix, each player tries to mini-
mize their corresponding cost. Given that, in this
case, it reached Nash Equilibrium, it was observed
that job 5 was preferred in the current machine but
in a previous position.

TABLE 3. PAYOFF MATRIX FOR JOB AGENT 5 IN THE FIRST ITERATION.

MACHINE 1 MACHINE 2
Ji Pi Ci  PartialFi | Ji Pi Ci  Partial Fi
1 8 8 8 2 4 4 4
3 30 38 46 5 46 50 54
4 19 57 103 6 36 86 140
7 21 78 181 9 6 92 232
8 23 101 282 10 17 109 341

B. Results from Numerical Example

After 127 iterations, the algorithm reached an
equilibrium, which implies that job agents in the
current machine were no longer motivated to move
to other positions. The equilibrium reached corres-

AGENT 0 ponds to a mixed equilibrium, that is, on the long
ROUND 1 C D run, no strategy is dom1na1.:ed but a percentage
of 62.7% was given to choosing strategy AD. The
JOB AGENT A 649,04 252,42 | 62940 610,00 results to all these schedules were plotted as ob-
5 B 332,52 163,50 | 454,16 1.228,50 served in figure 1, where the Pareto Chart is cons-
tructed and table 5 shows the values for the Strict
Pareto Solutions.
PARETO FRONTS
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Fig. 1. Pareto Front obtained from the
Scheduling Game for this example.
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TABLE 5. STRICT PARETO SOLUTIONS OF THE
SCHEDULING GAME FOR THIS EXAMPLE.

105 552
106 504
107 458

Pareto Front shown displays the solutions that are
considered non-dominated by both types of agents in
the Scheduling Game. These solutions represent the
best allocation of jobs for both job agents and the cen-
tral agent, after their interaction on the simulation
game. The solutions shown are clearly conservative,
due to the nature of game theory, where solutions
might avoid getting a better one; which is evidently
selfish. It is important to note that the values are
also a result of some randomness that took place du-
ring the game.

The values that have constructed the Pareto Front
are efficient schedules that have been generated
throughout the game, for the reported schedules. All
these solution sets are strict Pareto solutions because
there is at least one strict inequality between them,
supporting the classical multi-criteria decision ma-
king theory (MCDM). In table 6, the schedules for
the strict Pareto solutions are specified with their
values, Z.

TABLE 6. SCHEDULES GENERATED THAT BELONG TO
THE STRICT PARETO FRONT SOLUTION SET.

SCHEDULE | MACHINE 1 | MACHINE 2 | Z(Cmax, 3Cj)
(91,J3, 97, | (J5, I8, J10,
1 J2) J4. J6, J9) (105, 552)
(J8,J10,J3, | (J9, 37, J5,
2 J6} J1, 34, J2) (106, 504)
©5,31, 91, | @9, J10, 47,
3 J3, J2} J8, J6} (107, 458)

C. Comparison of the results to the Classical Multi-
criteria Techniques

A solution to this same scheduling problem was ob-
tained by Gupta and Ho in their paper “Minimizing
Flow Time subject to Optimal Makespan on Two
Identical Parallel Machines”, the difference being
the fact that their solution approach was based on
the hierarchical rule in MCDM. This procedure is
known as the lexicographic search base algorithm
[21], [23]. Other results were obtained from the LE-
KIN SCHEDULING SYSTEM Software, using the
rules already known in scheduling like SPT, LPT,
FCFS (first come first served) and a heuristic used by
this software to solve multi-criteria scheduling pro-
blem, known as the Shifting Bottleneck Heuristic.
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TABLE 7. RESULTS FROM THE CLASSICAL
MUuLTI-CRITERIA TECHNIQUES

RESULTS FROM OTHER ALGORITHMS

ALGORITHM/HEURISTIC Cmax Flow Time
General SB Routine/sumC 110 458
LPT 106 800
SPT 120 458
FCFS 109 665
Lexicographical Search Base* 105 460

Table 7 shows the solutions for heuristics in mul-
ti-criteria scheduling. These solutions were com-
pared to the ones obtained from the Scheduling
Game proposed. Given the set of solutions for the
Scheduling Game as P ¢ and the set of solutions
found by MCS as P M¢ an interpretation can be
established with respect to the Pareto points gra-
phed in figure 2, where the values seem to be close
enough to the ones found by classical multi-criteria
techniques, as shown.

P M¢ = {(110, 458); (106, 800); (120, 458); (109,
665); (105, 460)}

PS¢ ={(105, 552); (106, 504); (107, 458)}

When comparing the solutions to the results for
the Lexicographical Search Base algorithm and
the Shifting Bottleneck Heuristic, the percent de-
viations indicate a level of the efficiency within the
model, since they are close together and the impro-
vement for one value, worsens the improvement for
the other value.

LSB Algoritm SB Heuristic
Schedule | ~1%% | Cmax | 11 | Cmax
1 20.00% | 0.00% | 20.52% | -4.55%
2 9.57% | 0.95% | 10.04% | -3.64%
3 .0.43% | 1.90% | 0.00% | -2.73%

It is observed that the results obtained using the
game theoretic approach can be used as alternate
schedules for certain situations where it is impos-
sible to reach an optimal one. Basically, these solu-
tions are rather conservative but they are flexible
because they can adapt towards many situations
that can become conflictive.

IV. A META-HEURISTIC APPROACH:
USING EVOLUTIONARY ALGORITHMS

It has been known in literature that the many
approximations that meta-heuristics have given
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to solutions of different types of scheduling pro-
blems are considered NP-Hard. Moreover, sche-
duling problems considering multiple objectives
are considerably complex, for which, most of them
are NP-Hard. For these problems, which cannot
be solved in polynomial computational time, so-
lutions are approximations that can be obtained
through the use of meta-heuristics and heuris-
tics.

During this investigation, an evolutionary al-
gorithm known as SPEA, Strength Pareto Evolu-
tionary Algorithm, was implemented as another
approach to solve the scheduling problem studied.
This approach, in spite of the game theoretic one,
generates elitist solutions due to the nature of the
algorithm.

A. SPEA- Strength Pareto Evolutionary Algorithm
The general structure of SPEA is shown below:

SPEA - Strength Pareto
Evolutionary Algortitm

1 Initial Population

2  For t=1 To Generations
3 Select Non-Dominated Solutions (P”)
4 While N > N’ Do

5 Clustering
6 End while

7 Fitness P and P’

8 Selection

9 Crossover

10 Mutation

11 Update Population
12 End For

B. Chromosome Representation

Evolutionary algorithms use the form of a chromo-
some to represent a solution to a given problem,
which mainly contains genetic information that
can be shown as a string of characters, vectors or
matrices. Each unit of the chromosome is denomi-
nated an allele and the structure of the chromoso-
me can be represented by real numbers, integers
or binary digits. The chromosome representation
used during this investigation was based on the se-
quence of jobs in each machine. Franca, et al. [24]
developed this type of chromosomal representation
for single machine problems with sequence depen-
dent setup times, with alleles assuming integer va-
lues from 1 to n, where n is the number of jobs. For
the specific problem studied, the alleles for each
machine are separated by a character that conta-
ins the letter M and the corresponding number of
the machine. For example:

26

MO 496 M12 85 10...
M1

M2

Job 4, Job 9, Job 6

Job 2, Job 8, Job 5, Job 10

Fig. 2. Chromosome Representation for
parallel machine problems.

C. Selection, Crossover and Mutation

Every type of evolutionary algorithm contains the
main functions such as selection, crossover and mu-
tation. The selection function uses a method to select
a group within the population in order to perform
the operations of crossover and mutation. The selec-
tion function used for this problem in particular is
based on a binary tournament selection. The cros-
sover operator used for this type of chromosomes is
the Uniform order Crossover function, which is based
on randomly selecting a portion of alleles from each
parent and copying it to the offspring. In the example
shown on figure 3, the shaded portions represent the
alleles selected for Offspring A, in order of appearan-
ce the portions are selected and they are randomly
placed one of the machines of the Offspring A. If a job
is already repeated, the portion goes to Offspring B.
The non-shaded portion of the chromosomes is placed
in Offspring B in the same way that it happened to
Offspring A.

Parent A:M0496M128510M2317
Parent B-M013M110472M28965
Offspring A:M04389M162M21051
Offspring B:M0735M1948M212106

Fig. 3. Uniform order crossover.

The mutation operator is based on the swapping
of any two jobs chosen randomly from different ma-
chines in the chromosome. This way, the operator
assures the reallocation of two different jobs, becau-
se the purpose of it is to generate new search spaces
in order to avoid the premature convergence to local
optima.

D. Fitness and Clustering

SPEA [26] uses the fitness and clustering functions.
The fitness function is applied to both external (P’)
and current (P) population members and it is used as
a measure of how well fitted each of the population
members are with respect to each other. For the po-
pulation P’, a strength is determined for each mem-
ber i by a probability of how many members in the
current population are dominated by it with respect
to the total:
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For the population P, the fitness is determined by
the sum of all the S; of the external population mem-
bers which weakly dominate j:

F=1+X%Si )

The clustering algorithm reduces the size of the
external population P’ of size N to N “ by calcula-
ting the average Euclidean distance:

g1 3dGj 6)
2G| Cyliecnjec,

These distances, known as cluster-distances,
are computed and the clusters with the minimum
cluster-distance are combined together to form the
bigger cluster. This continues until the number of
clusters in the external population is reduced to IV .

E. Parameter Selection

One of the crucial aspects in every implementation
of the evolutionary algorithms is the selection of pa-
rameters. Gutierrez and Mejia [21] considered two
combinations of parameters: the first one, with a
small size of the population and high probabilities
of mutation and crossover; and the second one, with
a large size of the population but low probabilities
of mutation and crossover. Other authors like [27]
have concluded that the optimum combination va-
ries from problem to problem. The parameters de-
fined in SPEA are the number of generations, size
of the population, size of the external population,
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probability of mutation and probability of crossover.
The values for these parameters were determined
experimentally, after considering the different le-
vels for each parameter and depending on value that
gave the lowest flow time in each run. The values
chosen were:

Number of generations: 2000.

Size of the population: 50000.

Size of the external population: 10.

Probability of mutation: 15%.

Probability of crossover: 70%.

VI. StmuLATION RESULTS

The interest in obtaining results through the use of
a meta-heuristic like SPEA, is to compare both ap-
proximated solutions and observe the difference of
the elitist approach with the conservative one. Sin-
ce both methods generate Pareto front set of points,
solutions cannot be based on any particular point,
but on the whole Pareto front. The spacing and the
distance between Pareto Fronts (generational dis-
tance) are considered the most important variables
to measure in these experiments.

The instances used in the computational experi-
ments were randomly generated and the ranges used
for n and m were [25], [26], [15] and [13], [28], [29]
respectively. The processing times were generated
following a discrete uniform distribution DU(1,50)
and 20 replications were considered for each confi-
guration of the number of jobs and machines, gene-
rating a total of 120 runs.

For each configuration of jobs and machines, a
Pareto front was constructed using both approa-
ches. Figures 4, 5, 6, 7, 8 and 9 show the comparison
of the strict Pareto Fronts.

COMPARING PARETO FRONTS

869 -

Flow Time

868 -

867 -

866 -

174 180

182

184 186 188 190 192

Cmax

[—>—SPEA——GAME THEORY]

Fig. 4. Comparison of strict Pareto fronts for 10 jobs and 2 machines.
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COMPARING PARETO FRONTS

2520

2480 1

2460 -

2440 A

Flow Time

2420 4

2400 4

2380 -

2360 T T T T T T T T T
274 276 278 280 282 284 286 288 290 292 294

Cmax

[—=—SPEA——GAME THEORY |

Fig. 5. Comparison of strict Pareto fronts for 20 jobs and 2 machines.

COMPARING PARETO FRONTS

4950

4900 A

4850

4800 -

Flow Time

4650 1

4600 4

4550 T T T T T T T
375 380 385 390 395 400 405 410 415

Cmax

[—=—SPEA——GAME THEORY |

Fig. 6. Comparison of strict Pareto fronts for 30 jobs and 2 machines.

COMPARING PARETO FRONTS
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Flow Time

460 -
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440 A
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Fig. 7. Comparison of strict Pareto fronts for 10 jobs and 3 machines.
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Fig. 8. Comparison of strict Pareto fronts for 20 jobs and 3 machines.

COMPARING PARETO FRONTS
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Fig. 9. Comparison of strict Pareto fronts for 30 jobs and 3 machines.

The results for this simulation shows an inter-
esting range of solutions derived from both approa-
ches. Results from one approach do not dominate the
other, in fact, what was observed is that one approach
complements the other. Thus suggesting these could
work together to develop robust Pareto Frontiers in
machine scheduling problems, presenting different
alternatives to decision makers.

VII. ConcLusioNs AND FUTURE RESEARCH DIRECTIONS

Regarding the outcomes obtained and the solutions
that were gathered, it can be stated that the sequen-
cing of jobs found throughout the game theoretic
model can generate alternate sources of solutions for
these types of configurations(Pm/||Ca, 2C:), howe-
ver it can be rather conservative with respect to the
best results found so far in the MCDM approach.
Apart from this, randomness may affect results.
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The dynamic tradeoffs between the two agents
and the fact that each one had a specific objective
(conflictive), has demonstrated that it is possible
to consider more than one objective for these confi-
gurations on productive systems. Additionally, the
usefulness of the incentives used on the equations
was demonstrated by the participating agents who
are willing to move from positions and open the so-
lution space by creating alternate schedules based
on rational confrontations between agents.

On the other hand, meta-heuristics, such as
evolutionary algorithms, have shown to be more
efficient in obtaining solutions to production pro-
gramming problems with a lower computational
complexity than the game theoretic approach. It
was also observed that both approaches can com-
plement each other because each one seems to be
concentrated on one side of the Pareto front. This is
important because it can be considered for further
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studies, where more robust solutions can be obtained
through a combination of both procedures.

Gates towards further research are still broad and
the results that have turned out from this study can
be sharpened in order to make solutions more robust
and, to get to equilibrium faster by considering more
accurate equations concerning payoffs within the
dynamic matrix. As a further analysis to the game
theoretic interpretation of the mechanism proposed
during this research, it is important to understand
that it relies on a game that considers giving incenti-
ves to the players, whose payoffs have an additional
portion related with a B calculated for the game.

Branches that may originate from Game theore-
tic principles (GTP) and meta-heuristic approaches
to productive systems can be said to be endless. For
instance, this same problem may have a big research
potential if set up times are considered. It can also be
suited to analyze other objectives; working with due
dates, deadlines, etc. GTP is suited to any environ-
ment where an intelligent agent has decisions to take
that must satisfy someone else’s, who is also acting
rationally.
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