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Abstract-- This paper considers the problem of schedul-
ing a given set of samples in a mineral laboratory, located 
in Barranquilla Colombia. Taking into account the natural 
complexity of the process and the large amount of variables 
involved, this problem is considered as NP-hard in strong 
sense. Therefore, it is possible to find an optimal solution in 
a reasonable computational time only for small instances, 
which in general, does not reflect the industrial reality. For 
that reason, it is proposed the use of metaheuristics as an 
alternative approach in this problem with the aim to deter-
mine, with a low computational effort, the best assignation of 
the analysis in order to minimize the makespan and weight-
ed total tardiness simultaneously. These optimization objec-
tives will allow this laboratory to improve their productiv-
ity and the customer service, respectively. A Multi-objective 
Ant Colony Optimization algorithm (MOACO) is proposed. 
Computational experiments are carried out comparing the 
proposed approach versus exact methods. Results show the 
efficiency of our MOACO algorithm.

Keywords-- Scheduling; Ant Colony Optimization; Multi-
objective Optimization

Resumen-- Este trabajo considera el problema de programar un 
conjunto de muestras en un laboratorio de análisis de minerales 
ubicado en Barranquilla Colombia. Teniendo en cuenta la comple-
jidad intrínseca del proceso y la gran cantidad de variables invo-
lucradas, este problema es considerado como NP-duro en sentido 
estricto. Por lo tanto, es posible encontrar una solución óptima en 
un tiempo razonablemente corto solo para instancias pequeñas, 
las cuales en general no reflejan la realidad en la industria. Por 
esta razón, se propone el uso de metaheurísticas como enfoque al-
ternativo en este problema con el fin de determinar, con un costo 
computacional bajo, la mejor secuencia para el análisis de las 
muestras que optimice el makespan y la tardanza total ponderada 
simultáneamente. Estos objetivos de optimización permitirán al 
laboratorio mejorar su productividad y el servicio al cliente respec-
tivamente. Un Algoritmo Multiobjetivo de Colonia de Hormigas 
(MOACO) es presentado aquí. Experimentos computacionales son 
realizados para comparar el algoritmo propuesto con respecto a 
métodos exactos. Los resultados obtenidos muestran la eficiencia 
de nuestro algoritmo MOACO.
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I. IntroductIon

Scheduling is one of the hard optimization problems 
found in real industrial contexts. Generally speak-
ing, scheduling is a form of decision-making that 
plays a crucial role in manufacturing and service 
industries. According to Pinedo [1], scheduling prob-
lems deal with “the allocation of resources to tasks 
over given time periods and its goal is to optimize 
one or more objectives”. This work focuses on the 
Scheduling process for a specific configuration of a 
mineral laboratory located in Barranquilla (Colom-
bia), which is in charge of reception, identification, 
preparing and analysis on samples of coal and coke 
according to the customer requirements either for 
certifying the quality of the material and evaluat-
ing the feasibility to open a coal mine, or for sell-
ing the coal after mining, or even for knowing the 
physics and chemical properties of it for a customer 
utilization, for example in thermoelectric plants and 
steel companies. Such samples might come from Ex-
plorations, where samples are obtained by perfora-
tion processes. Exploitations and Development, in 
which the samples are obtained from exploitation 
fronts, stationary or during samples transportation 
in piles, ships, wagons, trucks, conveyors, etc; also, 
some samples come from customers directly. These 
different ways in which the laboratory receives the 
samples and the variability of the coal market to-
gether with external problems related to the mining 
sector (union strikes, closing of mines for breaking 
the law, and the bad conditions of colombian roads, 
etc.), generates that the demand of the laboratory 
can’t be known in advanced and therefore, is quite 
difficult to plan or schedule the samples for 46 types 
of analysis that the laboratory carries out.

On the other hand, a specific sample might require 
a previous preparation or not and when it arrives to 
the laboratory, it is possible one or more analysis 
to be required depending of customer needs. Thus, 
taking into account the high volume of samples and 
the quantity of analysis for each one, the capacity of 
laboratory is -in some cases- exceeded, which is es-
timated in 70 samples for preparation during a day 
trip (8 hours) and for processing is among 35 and 45 
samples for a day trip, depending on the analysis 
performed. This situation generates an accumula-
tion of samples in a queue and, therefore, a delay in 
the deliver to customers. Additionally, the number 
and types of analysis to be performed to a sample 
is known only when this sample is received and 
identified; this, added to the samples that are being 
processed and the priority system –which is defined 
depending on the customer importance-, makes im-
possible to estimate with precision the due date.

At this moment, the scheduling of samples in the 
laboratory is done in a manual way at the begin-
ning of a day trip taking into account the analysis 
in process and those that couldn’t be completed on 

the last day trip and the availability of machines and 
workers. The analysis is done in this way because 
the laboratory does not have a formal methodology 
that allows performing this tasks in an effective way 
and therefore taking better decisions in the manner 
of assigning samples to the resources so that the 
laboratory can supply the demand, and at the same 
time increase the utilization rate of machines and 
decrease the idle time of this machines. Therefore, 
taking into account the natural complexity of the 
process and the large amount of variables involved, 
the scheduling process is considered as a NP-hard 
problem in strong sense. 

As in a large number of real-life optimization 
problems in economics and business, the NP-hard-
ness of a scheduling problem means that it cannot be 
solved in an exact (optimal) manner within a reason-
able amount of time. Hence, the use of approximate 
algorithms is the main alternative to solve this type 
of problems. According to Talbi [2], approximate al-
gorithms can be classified in two classes: dedicated 
heuristics and meta-heuristics. The former are 
problem-dependent and are designed and applicable 
to a particular problem. The latter are called meta-
heuristics procedures and represent more general 
approximate algorithms applicable to a large vari-
ety of optimization problems. Meta-heuristics solve 
instances of problems that are believed to be hard 
in general, by exploring the usually large solution 
search space of these instances. These algorithms 
achieve this by reducing the effective size of the 
space and by exploring that space efficiently.

With the improvement of computing performance, 
the past 25 years have witnessed the development of 
numerous meta-heuristic algorithms in various com-
munities that sit at the intersection of several fields, 
including Artificial Intelligence, Computational 
Intelligence, Soft Computing, Mathematical Pro-
gramming, and Operational Research. Most of the 
meta-heuristics imitate natural metaphors to solve 
complex optimization problems (e.g., evolution of spe-
cies, annealing process, ant colony, particle swarm, 
immune system, bee colony, and wasp swarm). Meta-
heuristics are more and more popular in different re-
search areas and industries. Scheduling is one of the 
hard optimization problems found in real industrial 
contexts for which several meta-heuristic procedures 
have been successfully applied [3]. Among the set 
up to date available meta-heuristic algorithms, Ant 
Colony Optimization (ACO) emulates the behaviour 
of ‘‘real’’ ants to find the optimal path between their 
nest and a food source.

The objective of this paper is to solve a multi-ob-
jective scheduling problem in a real context, which is 
a mineral laboratory. Objective functions are defined 
as the minimization of the total completion time of 
all jobs (or makespan) and total weighted tardiness. 
Our solution approach is based on a Multi-objective 
Ant Colony Optimization Algorithm. As presented 
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next in this paper, ACO algorithms have been used 
to solve various combinatorial optimization prob-
lems, including different scheduling problems [4]. 
For the particular case of a mineral laboratory, to 
the best of our knowledge there is no evidence of us-
ing metaheuristics for scheduling in this kind of con-
figuration. However, for scheduling problems the use 
of metaheuristics is very effective and widely used as 
in academic context like in real problems. 

The rest of this paper is organised as follows: Sec-
tion 2 is devoted to present the review of literature 
related to the solution of some particular scheduling 
problems. Section 3 shows the formulation and math-
ematical model of the problem under study. Section 
4 presents in detail the proposed ACO algorithm, 
while Section 5 and 6 is devoted to computational 
experiments and the analysis of results. This paper 
ends in Section 7 by presenting some concluding re-
marks and suggestions for further research.

II. LIterature revIew

The scientific literature has extensively reported aca-
demic works and real-life applications regarding the 
utilization of metaheuristics for solving scheduling 
problems. Although most of these works have focused 
on single objective applications, we have some appli-
cations that involve the optimization of two or more 
objectives simultaneously, especially in shop sched-
uling problems [5]-[6]. Lei [7] presented a survey pa-
per of Multiobjective scheduling problems for produc-
tion planning. In the same way, various intelligent 
heuristics and meta-heuristics have become popular 
such as Simulated Annealing (SA), Tabu Search 
(TS), Multi-Agent System (MAS), Genetic Algorithm 
(GA) and ACO [8]. For example, authors like: [10], 
[11], [12], and [13], have used those metaheuristics 
for solving different kind of shop scheduling prob-
lems where one of more objectives are optimized and 
– in general - one of them is the makespan. At the 
same way, authors like: [11] [12], and [14] have used 
some heuristics and metaheuristics for different 
types of scheduling problems like production plan-
ning, aircraft schedule or route planning.

On the other hand, ACO approaches imitate the 
behavior of real ants when searching for food. Some 
observations have shown that although an ant has 
limited capacities, it can with the collaboration of the 
other ants; find the shortest path from a food source 
to their nest without visual cue. To perform complex 
tasks, a colony of ants uses a chemical substance 
called ‘‘pheromone’’, which they secrete as they move 
along. The pheromone provides ants with the ability 
to communicate with each other. Being very sensitive 
to this substance, an ant chooses in a randomly way 
the path comprising a strong concentration of this 
substance. Thus, when several ants cross the same 
space, an emergence of the shortest path is obtained. 
The ACO algorithms use systems formed by several 

artificial ants. These latter not only simulate the be-
havior of real ants described above, but also (i) apply 
additional problem- specific heuristic information, 
(ii) can manage the deposited quantity of pheromone 
according to the quality of the solution; moreover it is 
possible to have various types of pheromone, and (iii) 
has a memory which is used to store the search his-
tory. Each ant uses the collective experience to find 
a solution to the problem [8][9]. The first ACO algo-
rithm is called ant system (AS) [15]. It has been used 
to solve the traveling salesman problem (TSP). Then, 
AS was improved and extended. The improved ver-
sions include the ant colony system (ACS) [16], the 
Max–Min ant system (MMAS) [17], etc. The ACO 
algorithms have been also successfully used for solv-
ing a range of combinatorial optimization problems: 
the vehicle routing problem, the quadratic assign-
ment problem, etc. Likewise, they have been applied 
to miscellaneous scheduling problems such as: single 
machine, parallel machines, flow shop; job shop [18], 
open shop [19]; the general shop scheduling or group 
shop scheduling (including the job shop and the open 
shop) [20]; the hybrid flow shop [21]-[23] and the hy-
brid job shop.

Finally, like we previously mentioned, to the best 
of our knowledge we observe that no work has been 
previously proposed in the academic literature and 
real applications to study scheduling problem with 
simultaneous optimisation of the makespan and to-
tal weighted tardiness. These criteria are very im-
portant in real context because in many cases the 
companies have the aim of increasing its productiv-
ity (which can be obtained with the minimization of 
makespan) and while increasing the level of service 
customer (which it can gets minimizing total weight-
ed tardiness). Therefore, in this paper we study this 
gap in the literature by proposing an Ant Colony 
Optimisation (ACO) algorithm to solve this complex 
scheduling problem.

III. ProbLem FormuLatIon

A. System Description

Each sample that comes to the laboratory, is identi-
fied, registered and assigned to the respective analy-
sis as we see in figure 1. Some samples that comes to 
a particular customer do not pass for the activities or 
sub process of the stage 1, which consists in prepar-
ing samples for the corresponding analysis. Then, 
this same sample can take only one or all the analy-
sis performed in stages 2 to 6 following the order or 
precedence showed in figure 1.

As we show later in model formulation, it is neces-
sary to define a decision variable for establish what 
kind of analysis has to be performed to each sample 
and also, to know which stages and sub process are 
necessary to process this sample. The types of analy-
sis are described in Table 1
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Fig. 1. Illustration of laboratory configuration and the different types of analysis performed.

Table 1. descrIPtIon oF the dIFFerent tyPes 
oF anaLysIs PerFormed, Process and stages.

Type of analysis Process (u)
Crushing 1
ADL 2
Pulverization 3
Homogenization 4
HGI 5
Coarse Series Granulometry Coal and Coke 6
Fine Series Granulometry 7
Apparent Relative Density Coal 8
Apparent Relative Density Coke 9
Plastometry 10
Dilatometry 11
TGA 12
Ashes 13
Moisture 14
Volatile Matter 15
Sulfur 16
Calorific Value 17
Ashing 18
SO3 19
Ash Elemental Analysis 20
AFT 21
Trace Elements 22
Equilibrium Moisture 23
Forms of Sulfur 24
FSI 25
Australian Specific Gravity 26
Oxidation Index 27
CHN 28
Fluorine 29
Chlorine 30

Therefore, taking into account the information 
previously mentioned, the formulation of mathemat-
ical model that describes the problem under study is 
presented below.

B. Mathematical model 

1) Model parameters:

n:  Number of jobs (samples) To be scheduled.
m:  Number of process
pik:  i = 1, …, n; k = 1, …, m; processing time of job 

i at process u di: due date of job i
hi:  Priority of job i; 3 if is high,2 if is middle and 

1 if is low
Qk:  k = 1, …, m; Capacity of process u
Sik:  Binary parameter,iqual to 1 for assigned 

analysis to job i,if this analysis has to use the process 
k; 0 Otherwise

2) Variables:

Xijk:  i, j = 1, …, n; k = 1, …, m; Binary variable,iqual 
to 1 if the job i is processed in position j in the process 
k; 0 Otherwise

rik:  Inicialization time of job i in the process k
Cik:  Completion time of job i in the process u of 

stage l
Ti:  Tardiness of job i
Wi: weight of job i
Cmax: Makespan
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(E)

Wi =    hi 
 ∑n

i = 1hi

Ti = Max(0, Cmax - di ) ∀i = 1, .., n 
 (F)

Cmax = Max(Cik)  ∀i = 1, .., n; ∀k = 1, .., m 
 

(G)

Cik ≥ 0,   ∀i = 1, ..,n; ∀k = 1, .., m 
 

Ti ≥ 0,   ∀i = 1, .., n  
  

The restriction (A) implies that each job has to be 
processed only once at machines assigned; if the cor-
responding analysis does not need using some ma-
chine, then the machine is not used. The restriction 
(B) indicates that each job has to be assigned to one 
machine if the job analysis implies the use of this ma-
chine. (C) Refers to termination times of jobs in each 
machine. In restriction (D), we appreciate the order 
flow in the samples at the machines. These last two 
restrictions make sure also, that the jobs is not over-
lapping in every machines. The sets of constraints (E) 
and (F) define the criteria Cmax and ∑Ti × Wi that are 
minimized. Finally, the restriction (H) ensures that 
the value of these criteria are not negatives.

v. ProPosed aco aLgorIthm

Ant Colony Optimization (ACO) is a meta-heuristic ap-
proach proposed by [24] and improved in later research 
(e.g. see [17] and [18]). The common behaviour of all 
variants of ant-based algorithms consists on emulate 
‘‘real’’ ants when they find the optimal path between 
their nest and a food source. Several studies have ap-
plied ACO to solve different discrete and continuous 
optimisation problems [24]. One of these applications 
involves scheduling problems, as pointed out by [4] in 
a recently published extended literature review paper.

In this paper, we use the Ant Colony System (ACS) 
approach to solve the multi-objective scheduling prob-
lem under study. The following elements have to be 
defined [20]: 
• An appropriate model to represent pheromones
• The mechanism to update the pheromone trail
• A heuristic function employed to provide informa-

tion about the problem under study
These elements are employed to guide the selection 

of a job to be executed at a given time in the system 
analysed. This impacts the system behaviour. In order 
to obtain feasible solutions, job routing sequence has 
to be respected at each step when building a solution. 
This is ensured by using a restricted candidate list of 
all jobs that may be carried out at a given time of the 
schedule. 

3) Objective Function:

Min ∑ Ti × Wi

Min Cmax

4) Subject to: 

(A) 
 n

∑ Xijk = Sijk
j=1

∀i = 1, …, n; ∀k = 1, …, m

(B)
 n

∑ Xijk = Sjk
i=1

∀j = 1, …, n; ∀k = 1, …, m

(C)

Cik = Ci(k-1) + 
[∑n

i=1Sik] × pik + ∑m
k=1 (Xijk × pik) 

  Qk

Where 
[∑n

i=1Sik] is the representation of the integer 
part of this operation.

(D)

ri11 = 0
ri2 = Ci1
rii3 = Ci2
ri4 = Ci3
ri5 = Cii4
ri6 = Ci5
ri7 = Ci6
ri8 = Ci7
ri9 = Ci8
ri10 = Ci4
ri11 = Ci10
ri12 = Ci4
ri13 = Ci4
ri14 = Ci4
ri15 = Ci4
ri16 = Ci4
ri17 = Ci4
ri18 = Ci4
ri19 = Ci18
ri20 = Ci18
ri21 = Ci18
ri22 = Ci18
ri23 = Ci4
ri24 = Ci4
ri25 = Ci4
ri26 = Ci4
ri27 = Ci4
ri28 = Ci4
ri29 = Ci4
ri30 = Ci4
∀i = 1, …, n

Qk
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A. Constructive procedure

While a feasible solution is constructed, each ant 
k independently performs a sequence of processing 
jobs at his step. Hence, each ant k has to make two 
decisions: On the one hand, it has to select a job from 
the restricted candidate list Lk, but on the other 
hand, the ant has to select the position in which this 
processing job will be carried out. In order to respect 
processing precedence constraints, our solution ap-
proach consist of solving the problem stage by stage 
(a stage is a specific place of laboratory where par-
ticular types of analysis are performed). Solutions 
are hence constructed by repeating it at each pro-
cessing stage in the system. Selected jobs are then 
registered successively in a list that also shows their 
position in the processing sequence. This avoids the 
procedure to select a job more than once in the same 
sequence. The structure of the proposed algorithm 
is presented in Figure 2. 

Procedure ACO-Metaheuristic
Initialize parameters ( )
 While Stopping condition is not met do
  For each ant k
   For each stage
    Select the next processing job applying transition 
            state rule
    Assign a position to selected processing job
    Update pheromone trails locally in order to reduce 
            this quantity for the selected job and position
   End-For
  End-For
 Evaluate solution ( )
 Update pheromone trails globally in order to increase this 
   quantity in current best solution
 End-While
End-Procedure

Fig. 2. Description of the proposed ACO algorithm 
for the multiobjective scheduling problem.

B. Solving job sequence problem

The procedure uses a state transition rule to select 
job from the set Lk (referred to the nodes that have 
not yet visited by ant k). This rule is called random 
proportional rule. It gives the probability for ant k 
to select job, based on the pheromone trail τ and the 
heuristic information η. This rule is formally de-
scribed by the following expression:

=
argmax {| ( , )| ∙| ( , )| } if ≤ 0

∈ ( )
otherwise

(1)

Where S is a random variable chosen from the 
following probability distribution (Dorigo and Gam-
bardella 1997):

( , ) =
| τ (r,u) | α · | η (r,u) | β

∑ | τ (r,u) | α · | η (r,u) | βu ∈ Lk (r)
(2)

Where α and β respectively corresponds to rela-
tive weights of values τ(r, u) and η(r, u) in the rule; 
q, with 0≤q≤1, is a value randomly chosen from a 
uniform distribution, and q0, with 0≤q0≤1, is a se-
lection parameter that determines the relative 
importance between intensification and diversifi-
cation strategies. That is, if q>q0, the system will 
trend to diversification; but if q<q0, the system will 
trend to intensification.

1) Model to represent pheromones

As explained before, it is necessary to define an 
accurate model to represent the level of phero-
mones. This level of pheromones establishes the 
“desirability” of having two given jobs next to each 
other in the sequence. That is, τ(i, j) represents 
the convenience of having job j immediately after 
job i. Hence, the level of pheromones determines 
the sequencing order of jobs at each machine. It 
is also used to represent past experiences of ants 
with regard to the selection of a job from the list of 
candidates.

2) Heuristic information

The heuristic information gives specific informa-
tion about the problem under study. It is used to 
estimate the convenience of that a job has to be pro-
cessed at position. For the case of this research, the 
heuristic Information is computed taking into ac-
count the relative weight of each job, the time that 
is received, and the due date. According to this, the 
heuristic information is obtained by the following 
equation:

(
( ( ( (

, ) = _ (3)

Where:
Wi = Relative weight of job 
dtdue_date(i) = Due date of job i
dtarrival(i) = Time of job i is received

3) Updating pheromone trails

Both local and global strategies for updating phero-
mone trails are defined in our algorithm. The de-
tails are explained next.

Local updating of pheromone trail

The local updating of pheromone trail is executed 
for each ant once it has built a solution. This rule 
aims at not to influence the behaviour of other ants. 
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A mechanism is defined to evaporate the phero-
mone level of the job and position selected by 
the ant k. This selection becomes less attractive 
to other ants. This also aims at diversifying the 
paths that ants are taken and hence avoid con-
vergence to a local optimum. Modification on the 
pheromone trail is performed using the following 
expression:

τ( , ) = (1 − ) ∙ ( , ) + ∙ 0 (4)

Where τ0 is the initial level of pheromone and ρl, 
with 0 ≤ ρl ≤ 1) is the local evaporation parameter 
of pheromones.

Global updating of pheromone trail

Once ants have finished their paths, the global 
rule for updating pheromone trail is applied. This 
rule intensifies the level of pheromone on paths 
that allows ants to obtain a better solution. In the 
next iteration, this path will have a high proba-
bility of being chosen. The following expression is 
employed:

τ( , )  =  (1 − ).τ( , ) +  . ( , ) (5)

With:

∆ ( , ) = ( )−1 if ( , ) belongs to the best solution
0 otherwise (6)

Where ETb is the best solution that is obtained 
by multiplying the objective functions (makes-
pan and number of tardy jobs) by their respective 
weights. In other words, ETb is the lowest value 
from over possible schedules obtained by the ants. 
In addition, ρg (with 0 ≤ ρg ≤ 1) is the pheromone 
evaporation parameter.

v. exPerImentaL envIronment and 
Parameter settIng

This section first describes the datasets employed 
for the extended experimental study. Afterwards, 
the process employed to setup the parameters of 
the MOACO algorithm is described. Finally, the 
analysis of results is presented, as well as a com-
parison with an exact method and the laboratory’s 
method.

The algorithm was coded using Visual Basic for 
Applications (VBA) ®. Experiments were carried 
out on a PC with processor Intel Pentium ® Dual 
Core with 2.40 GHz and 4.0 GB of RAM. 

A. Benchmark instances

Datasets employed in our experiments were taken 
from the historical files of laboratory. We considered 
data from three months with high demand in July, 
August and September of 2014. These dataset em-
ployed samples (jobs) with different types of priority 
according to the scale defined in Section 3. A total 
of 30 replications of MOACO algorithm were carried 
out for each dataset in order to compare with the 
company schedule and with an exact method. For 
each replication, we compute the value of makes-
pan and total weighted tardiness with its respective 
weight in the objective function, which was estab-
lished in 0.5 for each one.

B. Parameters setting and convergence 

Several parameters have to be defined to run the 
MOACO algorithm. Preliminary runs were carried 
out in order to setup the values of such parameters 
with a representative instance for each problem size. 
As performance metrics, the makespan and the total 
weighted tardiness were considered since these are 
the objective functions of the problem under study. 

For the number of ants, we tested with 15, 20 
and 30 ants in the system (these values correspond 
to the number of jobs to be scheduled according to 
some datasets employed in the computational exper-
iments). Our performance analysis did not find any 
significant difference between such values. Hence, 
the number of ants was set to be 15, just for search-
ing computational efficiency (the higher the number 
of ants, the higher the computational time).

Regarding the parameters, the values presented 
in Table 2 were considered in the preliminary ex-
perimental design. According to Dorigo and Gam-
bardella (1997), these factors have a great impact on 
the algorithm’s behaviour and, as a consequence, on 
the quality of solutions. The values of α, β, ρ, phero-
mones and qo were defined according to the works 
of Kalouli et al. (2009, 2010), who studied a multi-
objective scheduling problem with a configuration 
relatively similar to the system under consideration 
in this study with both makespan and total earli-
ness/tardiness as objective functions.

Table 2. vaLues oF Parameters For aLgorIthm setuP

Parameter Values
α 1 and 2
β 2 and 3
ρ 0.01 and 0.1

qo.
0.8 and Log(iter)/Log(num_iter),
where iter and num_iter are, respectively, 
current iteration and total number of iterations

Quantity of 
pheromones 0.01 and 0.1
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A mixed factorial design with four replications 
was performed (Niebles-Atencio et al., 2012). 
The analysis of results was done using STAT-
GRAPHICS ® software. Results showed that the 
best combination of values for the different pa-
rameters is α=2, β=2, ρ=0.01, pheromones=0.01 
and q0=0.8. These values were employed further 
during the full computational experiments. After 
running several instances, we observed that the 
algorithm converged after 2000 iterations (see 
Figure 3). Hence, this was the number of itera-
tions we have set for running all experiments on-
wards.

Fig. 3. Convergence of MOACO algorithm.

III. resuLts 

This section presents the analysis of results of 
our computational experiment. All the experi-
ments were run for system configurations among 
15 and 70 jobs (that is the maximal capacity of the 
laboratory for a day trip). As we previously said, 
the performance of the proposed MOACO will be 
here compared against both real or laboratory 
schedule, and the exact solution using a Mixed-
Integer Linear Programming model. The MILP 
model was coded and run using AMPL® version 
8.0 for MS Windows®. Because of the problem of 
computational complexity, the model was run for 
instances with number of jobs less and equal to 
45. Hence, optimal solutions were obtained for 
these small sub problems. For instances with 
higher number of jobs, to get a solution was not 
possible in a reasonable time, even for the profes-
sional version of AMPL.

The general structure of the set of comparisons 
is presented in Table 3. We first present the global 
performance of the proposed MOACO algorithm. 
Table 4 summarizes the obtained values of mini-
mum, maximum and average objective functions 
values over the sets of instances. As ACO algo-
rithms are probabilistic in nature, thirty replica-
tions were carried out. Hence, a minimum and a 
maximum value for each objective function corre-
spond to the worst and the best value obtained at 
a given replication, while the average is computed 
over the set of thirty replications.

Table 3. generaL structure oF comParIsons

Jobs MOACO MILP LABORATORY

15 X X X

20 X X X

25 X X X

30 X X X

35 X X X

40 X X X

45 X X X

50 X  X

55 X  X

60 X  X

65 X  X

70 X  X

Table 4. average vaLues obtaIned by 
moaco For the objectIves FunctIons

Jobs
Cmax TWT

Min Max Avg. Min Max Avg.

15 1089 1198 1516 0,47 0,55 0,51

20 1799 1979 1858 1,58 1,82 1,7

25 1740 1914 2351 2,89 3,32 3,11

30 2738 3012 2043 0,29 0,34 0,32

35 1154 1269 2316 0,05 0,06 0,05

40 3258 3584 2628 3,26 3,75 3,51

45 1748 1923 2035 3,98 4,57 4,27

50 2129 2342 1406 4,04 4,65 4,34

55 550 605 1083 0 0 0

60 1512 1663 2103 3,2 3,68 3,44

65 2493 2742 2372 1,48 1,7 1,59

70 2026 2229 2127 2,85 3,28 3,07

Additionally, in order to maintain certain coher-
ence in the experimental analysis, a relative devia-
tion index, in percentage, was employed, as shown 
in Equation (7) and (8), where corresponds to the 
averages values of the objective function x (i.e., 
makespan or total weighted tardiness) obtained 
using proposed algorithm ACO for representative 
instances (number of jobs). Also, and corresponds 
to the values of the objective functions using the 
MILP model, and laboratory approach. These val-
ues are shown in Table 5. Note that a negative val-
ue of %dev means that the proposed ACO algorithm 
outperforms the method against it is compared 
with.

% =
−

× 100% (7)

% =
−

 
× 100% (8)
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Table 5. comParIson between moaco aLgorIthm, mILP modeL and Laboratory’s aPProach.

MILP MOACI LABORATORY Desviation 
between ACO 

and MILP model

Desviation 
between ACO 

and Laboratory 
Approach

Numbers 
of jobs Cmax TWT Cmax TWT Cmax TWT

18 716,82 2,74773 752,6 2,745502361 1254,216667 3,254945602 4,99% 0,08% -39,99% -15,65%

21 585,7 0 550,3166667 0 1086,666667 0 6,04% 0,00% -49,36% 0,00%

24 1750,64 7,40878 1921,25 5,838428204 2273,333333 6,34067644 9,75% 21,20% -15,49% -7,92%

27 1490,08 3,97539 1914,2 4,010057253 2586,6 5,150300772 28,46% 0,87% -26,00% -22,14%

28 1304,2 3,16926 1512,166667 3,196206019 5187,616667 3,813792735 15,95% 0,85% -70,85% -16,19%

34 1044,42 0 1044,416667 0 2067,833333 0 0,00% 0,00% -49,49% 0,00%

35 1959,35 3,99913 1747,583333 3,975150148 1496,95 4,215229234 10,81% 0,60% 16,74% -5,70%

37 1164,26 0,473643 1088,583333 0,474393009 2359,366667 0,506240656 6,50% 0,16% -53,86% -6,29%

41 1512,97 0,0635623 1154,2 0,049624885 2783,833333 0,267827422 23,71% 21,93% -58,54% -81,47%

42 2874,85 0,840928 3052,033333 0,838352739 12274,4 7,27130652 6,16% 0,31% -75,13% -88,47%

43 1261,68 1,19757 1126,85 1,19486152 1800,05 1,247865605 10,69% 0,23% -37,40% -4,25%

43 1151,28 0,815308 1873,433333 0,829390456 1800,05 0,829800233 62,73% 1,73% 4,08% -0,05%

44 1816,88 1,02595 1749,933333 1,080516053 8072,283333 4,369192826 3,68% 5,32% -78,32% -75,27%

45 2132,09 1,561114 1798,783333 1,580250444 2023,616667 1,64192463 15,63% 1,22% -11,11% -3,76%

When comparing the proposed MOACO algo-
rithm with laboratory’s schedule, we observe that 
MOACO is outperformed in only two cases (num-
ber of jobs 35 and 43) for makespan criteria. For 
the rest of instances, MOACO always performed 
better with a significantly difference. On the other 
hand, for total weighted tardiness criteria, MOA-
CO is only for two cases (number of jobs 21 and 
34) equal to the laboratory approach. For the rest, 
MOACO outperforms with a great difference (more 
than 80% in some cases) to laboratory’s schedule. 
Thus, the MOACO approach is widely the best 
alternative (in comparison for the laboratory ap-
proach) for scheduling samples at company’s labo-
ratory.

On the other hand, when comparing the proposed 
MOACO algorithm with MILP model, we observe 
that, although MILP model outperforms to MOACO 
in almost all instances, there is no a statistical dif-
ference among these two approach for both objec-
tive functions, as we see in Table 5 that shows the 
z test for mean comparisons was performed using 
MS-Excel ®. Therefore, we can say, with signifi-
cantly statistical evidence, that MOACO algorithm 
is as effective as the MILP model, with the plus 
that MOACO schedules the total amount of jobs but 
MILP model does not. Hence, MOACO algorithm 
can be used as an effective decision support tool for 
scheduling process in the mineral laboratory, in or-
der to minimize both: makespan and total weighted 
tardiness.

Table 6. statIstIcaL test For mean comParIsons 
oF moaco aLgorIthm and mILP modeL.

Criteria
MILP MOACO

Cmax TWT Cmax TWT

Mean 1854,2717 1793,1937 2,14163 2,07913

Var 693398,32 482826,811 3,79412 3,18026

N 30 30 30 30

hypothetical 
mean difference 0  0  

Z 0,27589  0,11594  

P(Z<=z) 
(one-tailed) 0,39131  0,45384  

Critical Value 
of Z (one-tailed) 1,64485  1,64485  

Critical Value 
of Z (two-tailed) 0,78262  0,90769  

Statistical 
value of Z 
(two-tailed)

1,95996  1,95996  

Table 7. average vaLues obtaIned by 
moaco For the objectIves FunctIons

Jobs
Cmax Total Weighted Tardiness

Min Max Avg. Min Max Avg.

20 627 666 649 4099 4245 4146

50 1674 1744 1709 20114 21808 21423

100 3843 3915 3879 161449 163033 162245
In Tables 8 and 9, we present the results for 20, 

50 and 100 job instances. Again, we notice that 
MOACO was better than Laboratory’s approach 
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for 50 and 100 job instances in both objective func-
tions. However, MILP produced a better makespan 
than MOACO for instances with 50 and 100 jobs. 
At the same time, in figures 4 and 5 we present in 
a graphic way, the percentage of deviation shown 
in table 5:

Table 8. average vaLues oF makesPan and totaL weIghted 
tardIness For 20 and 50 jobs Instances

Approach
20 jobs 50 jobs

Cmax %dev ∑∝Tj %dev Cmax %dev ∑∝Tj %dev

MOACO 649 - 4146 - 1709 - 21423

MILP 663 -2% 2704 53% 1525 12% 21235 1%

LAB. 652 0% 3825 8% 2528 -32% 30314 -29%

Table 9. average vaLues oF makesPan and totaL weIghted 
tardIness For 100 jobs Instances.

Approach
100 jobs

Cmax %dev ∑∝Tj %dev

MOACO 3879 - 162245

MILP 3565 9% 121335 34%

LAB. 4567 29% 160514 1%
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Fig. 4. % of Deviation of Cmax from MILP 
and Lab. Approach vs. MOACO.

Finally, in Figures 5, 6, 7 and 8 we show the Pa-
reto sets comparisons between MOACO with MILP 
and MOACO with Laboratory’s approach:
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Fig. 5. % of Deviation of Total Weighted Tardiness 
from MILP and Lab. Approach vs. MOACO.

Finally, in Figures 6, 7, 8 and 9 we show the Pa-
reto sets comparisons between MOACO with MILP 
and MOACO with Laboratory’s Approach:
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MOACO and MILP approach for makespan.
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MILP approach for Total Weighted Tardiness.
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As we can see in both sets of figures, the gap in 
the Pareto sets between MOACO and MILP ap-
proach is shorter than the gap in the Pareto sets 
between MOACO and Laboratory’s approach. This 
means that the performance for MOACO and MILP 
is very close in comparison for performance be-
tween MOACO and Laboratory’s approach. In this 
last case, the performance of MOACO is consider-
ably better than company’s approach, especially for 
makespan objective.

vII. concLudIng remarks and Further 
research

This paper studied the job scheduling problem in 
a real and difficult context of a mineral labora-
tory. Since in the scientific literature ACO algo-
rithms have shown to be good solution procedures 
for solving complex scheduling problems, an ACO 
algorithm was proposed in this paper to solve the 
multi-objective case of minimising makespan and 
total weighted tardiness. Computational experi-
ments were carried out using historical datasets. 
Results showed that very good solutions can be 
found using our ACO algorithm in comparison with 
the exact method and laboratory’s schedule with a 
considerably less time and computational effort. It 
is worthwhile to note that the quality of the solution 
is not affected by an increase in the number of jobs 
to be scheduled. Therefore, this computational tool 
is an effective decision support model that allows 
scheduling the samples in the laboratory in order 
to increase the customer level and its productiv-
ity simultaneously, even for a large number of jobs 
(samples). Then, this tool can be replicated in the 
different branches of laboratory for its flexibility 
and compatibility with laboratory’s software. For 
further research, the ACO algorithm could be hy-
bridised in order to improve much more its perfor-
mance when solving instances with large number of 
jobs. Heuristics or meta-heuristics such as Greedy 
Randomised Adaptive Search Procedure (GRASP), 
Genetic Algorithms or Simulated Annealing seems 
to be good options to be used for this hybridisation. 
Other opportunities for further research consist on 
adapting our ACO algorithm to solve for this situa-
tion, other types of multi-objective scheduling prob-
lems with objectives such as number of tardy jobs, 
total completion time, earliness, work in process 
etc. In addition, other versions of the problem can 
be considered. For example, problems with specific 
time windows for sample arrivals or stochastic pro-
cessing times.
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